Amplified fragment length polymorphism markers were used to assess the genetic relatedness between Dioscorea alata and nine other edible Dioscorea. These species include D. abyssinica Hoch., D. bulbifera L., D. cayenensis-rotundata Lamk. et Poir., D. esculenta Burk., D. nummularia Lam., D. pentaphylla L., D. persimilis Prain. et Burk., D. transversa Br. and D. trifida L. Four successive studies were conducted with emphasis on the genetic relationship within D. alata and among species of the Enantiophyllum section from Vanuatu. Study 1 was carried out to select a set of polymorphic primer pairs using 11 combinations and eight species belonging to five distinct sections. The four most polymorphic primer pairs were used in study 2 among six species of the Enantiophyllum section. Study 3 focussed mainly on the genetic relationship among 83 accessions of D. alata, mostly from Vanuatu (78 acc.) but also from Benin, Guadeloupe, New Caledonia and Vietnam. The ploidy level of 53 accessions was determined and results indicated the presence of tetraploid, hexaploid and octoploid cultivars. Study 4, included 35 accessions of D. alata, D. nummularia and D. transversa and was conducted using two primer pairs to verify the taxonomical identity of the cultivars `langlang', `maro' and `netsar' from Vanuatu. The overall results indicated that each accession can be fingerprinted uniquely with AFLP. D. alata is an heterogeneous species which shares a common genetic background with D. nummularia and `langlang', `maro' and `netsar'. UPGMA cluster analysis revealed the existence of three major groups of genotypes within D. alata, each assembling accessions from distant geographical origins and different ploidy levels. The analysis also revealed that `langlang', `maro' and `netsar' clustered together with the cultivar `wael' (D. transversa) from New Caledonia. Results are discussed in the paper. (Résumé d'auteur)