Select your language

Degassing dynamics of basaltic lava lake at a top-ranking volatile emitter: Ambrym volcano, Vanuatu arc

Allard Patrick, Burton Mike, Sawyer Georgina, Bani Philipson. 2016-08. .
ARTICLE, (2016-08 ) - PUBLISHEDVERSION - English (en-GB)

OPENACCESS - info:eu-repo/semantics/OpenAccess.
Audience : OTHER
HAL CCSD, Elsevier
Subject
Ambrym, lava lake, infrared spectroscopy, volcanic gases, magma degassing dynamics, volatile fluxes, [SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/Volcanology
Domains
Géologie, Volcanologie, Sciences de la Terre
Description

International audience Persistent lava lakes are rare on Earth and provide volcanologists with a remarkable opportunity to directly investigate magma dynamics and degassing at the open air. Ambrym volcano, in Vanuatu, is one of the very few basaltic arc volcanoes displaying such an activity and voluminous gas emission, but whose study has long remained hampered by challenging accessibility. Here we report the first high temporal resolution (every 5 s) measurements of vigorous lava lake degassing inside its 300 m deep Benbow crater using OP-FTIR spectroscopy. Our results reveal a highly dynamic degassing pattern involving (i) recurrent (100–200 s) short-period oscillations of the volcanic gas composition and temperature, correlating with pulsated gas emission and sourced in the upper part of the lava lake, (ii) a continuous long period (∼8 min) modulation probably due to the influx of fresh magma at the bottom of the lake, and (iii) discrete CO2 spike events occurring in coincidence with the sequential bursting of meter-sized bubbles, which indicates the separate ascent of large gas bubbles or slugs in a feeder conduit with estimated diameter of 6±1 m. This complex degassing pattern, measured with unprecedented detail and involving both coupled and decoupled magma-gas ascent over short time scales, markedly differs from that of quieter lava lakes at Erebus and Kilauea. It can be accounted for by a modest size of Benbow lava lake and its very high basalt supply rate (∼20 m3 s−1), favouring its rapid overturn and renewal. We verify a typical basaltic arc signature for Ambrym volcanic gas and, based on contemporaneous SO2 flux measurements, we evaluate huge emission rates of 160 Gg d−1 of H2O, ∼10 Gg d−1 of CO2 and ∼8 Gg d−1 of total acid gas (SO2, HCl and HF) during medium activity of the volcano in 2008. Such rates make Ambrym one of the three most powerful volcanic gas emitters at global scale, whose atmospheric impact at local and regional scale may be considerable.

Keywords
Language
English (en-GB)
Creators
Allard, Patrick, Burton, Mike, Sawyer, Georgina, Bani, Philipson
Contributors
Institut de Physique du Globe de Paris (IPGP) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Catania (INGV) ; Istituto Nazionale di Geofisica e Vulcanologia, School of Earth, Atmospheric and Environmental Sciences [Manchester] (SEAES) ; University of Manchester [Manchester], Department of Geography [Cambridge, UK] ; University of Cambridge [UK] (CAM), Laboratoire Magmas et Volcans (LMV) ; Observatoire de Physique du Globe de Clermont-Ferrand (OPGC) ; Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)
Sources
ISSN: 0012-821X, Earth and Planetary Science Letters, https://hal.uca.fr/hal-01636926, Earth and Planetary Science Letters, 2016, 448, pp.69 - 80. ⟨10.1016/j.epsl.2016.05.014⟩
Relation
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.epsl.2016.05.014
Coverage
Vanuatu
Name of newspaper