ISI Document Delivery No.: 257JQ Times Cited: 0 Cited Reference Count: 51 Cited References: Alory G, 2012, J GEOPHYS RES-OCEANS, V117, DOI 10.1029/2011JC007802 Barton IJ, 2007, J ATMOS OCEAN TECH, V24, P1773, DOI 10.1175/JTECH2084.1 Benhamou S., 2011, PLOS ONE, V6 Bingham FM, 2002, J GEOPHYS RES-OCEANS, V107, DOI [10.1029/2000JC000767, 10.1029/2000jc000767] Boyer TP, 2002, J GEOPHYS RES-OCEANS, V107, DOI 10.1029/2001JC000829 Chen J, 2012, J OCEANOGR, V68, P687, DOI 10.1007/s10872-012-0126-8 Choukroun S, 2010, J GEOPHYS RES-OCEANS, V115, DOI 10.1029/2009JC005761 Delcroix T, 2005, DEEP-SEA RES PT I, V52, P787, DOI 10.1016/j.dsr.2004.11.012 Delcroix T, 2011, DEEP-SEA RES PT I, V58, P38, DOI 10.1016/j.dsr.2010.11.002 Dewitte B, 2011, J GEOPHYS RES-OCEANS, V116, DOI 10.1029/2010JC006495 DONGUY JR, 1994, PROG OCEANOGR, V34, P45, DOI 10.1016/0079-6611(94)90026-4 Fisher M., 2004, GEOPHYS RES LETT, V31, DOI 10.1029/2004GL020112 Freeman LA, 2012, J GEOPHYS RES-OCEANS, V117, DOI 10.1029/2011JC007099 Gasparin F, 2011, DEEP-SEA RES PT I, V58, P956, DOI 10.1016/j.dsr.2011.05.007 Gorman MK, 2012, PALEOCEANOGRAPHY, V27, DOI 10.1029/2012PA002302 Hendon H, 2005, S-P B ENVIRON SCI, P223, DOI 10.1007/3-540-27250-X_7 Henin C, 1996, DEEP-SEA RES PT I, V43, P1833, DOI 10.1016/S0967-0637(96)00084-2 Henocq C, 2010, J ATMOS OCEAN TECH, V27, P192, DOI 10.1175/2009JTECHO670.1 Hernandez-Carrasco I., 2012, J GEOPHYS RES, V117, DOI 10.1029/2012JC008222 Hernandez-Carrasco I, 2011, OCEAN MODEL, V36, P208, DOI 10.1016/j.ocemod.2010.12.006 Huffman GJ, 2007, J HYDROMETEOROL, V8, P38, DOI 10.1175/JHM560.1 Ioualalen M, 2003, J OCEANOGR, V59, P105, DOI 10.1023/A:1022876708829 Kawamura R, 2002, J GEOPHYS RES-ATMOS, V107, DOI 10.1029/2001JD001070 Klemas V, 2011, J COASTAL RES, V27, P830, DOI 10.2112/JCOASTRES-D-11-00060.1 Leuliette EW, 1999, J PHYS OCEANOGR, V29, P599, DOI 10.1175/1520-0485(1999)0292.0.CO;2 Lin JWB, 2000, J ATMOS SCI, V57, P2793, DOI 10.1175/1520-0469(2000)0572.0.CO;2 MADDEN RA, 1972, J ATMOS SCI, V29, P1109, DOI 10.1175/1520-0469(1972)0292.0.CO;2 Maes C, 2004, GEOPHYS RES LETT, V31, DOI 10.1029/2004GL019867 Maes C, 2010, SOLA, V6, P129, DOI 10.2151/sola.2010-033 Maes C, 2002, GEOPHYS RES LETT, V29, DOI 10.1029/2002GL016029 Maes C, 2005, J CLIMATE, V18, P104, DOI 10.1175/JCLI-3214.1 Picaut J, 1996, SCIENCE, V274, P1486, DOI 10.1126/science.274.5292.1486 Pierce DW, 2012, GEOPHYS RES LETT, V39, DOI 10.1029/2012GL053389 Qiu B, 2009, J PHYS OCEANOGR, V39, P404, DOI 10.1175/2008JPO3988.1 Reul N., 2012, SMOS LEVEL 3 SSS RES, P21 Reul N., 2013, SURV GEOPHYS, P1, DOI 10.1007/GEOP-D-13-00003 Reverdin G, 2012, J GEOPHYS RES-OCEANS, V117, DOI 10.1029/2011JC007549 Reynolds RW, 2007, J CLIMATE, V20, P5473, DOI 10.1175/2007JCLI1824.1 Ridgway KR, 2003, PROG OCEANOGR, V56, P189, DOI 10.1016/S0079-6611(03)00004-1 Roemmich D, 1998, J GEOPHYS RES-OCEANS, V103, P13041, DOI 10.1029/98JC00583 Roemmich D, 2009, OCEANOGRAPHY, V22, P46 Rossi V, 2008, GEOPHYS RES LETT, V35, DOI 10.1029/2008GL033610 SCHMITT RW, 1995, REV GEOPHYS, V33, P1395, DOI 10.1029/95RG00184 Sudre J., 2013, LIMNOL OCEANOGR FLUI, V3, P1, DOI 10.1215/21573689-2071927 Takahashi K, 2011, GEOPHYS RES LETT, V38, DOI 10.1029/2011GL047364 Toole J. M., 2001, INT GEOPHYS SERIES, V77, P337 Torrence C, 1998, B AM METEOROL SOC, V79, P61, DOI 10.1175/1520-0477(1998)0792.0.CO;2 Wachenfeld D., 2007, CLIMATE CHANGE GREAT Waugh DW, 2006, J PHYS OCEANOGR, V36, P526, DOI 10.1175/JPO2865.1 Wheeler MC, 2004, MON WEATHER REV, V132, P1917, DOI 10.1175/1520-0493(2004)1322.0.CO;2 Yueh S., 2012, IEEE INT GEOSC REM S Maes, Christophe Dewitte, Boris Sudre, Joel Garcon, Veronique Varillon, David Institut de Recherche pour le Developpement (IRD); Centre National de la Recherche Scientifique (CNRS) Sea surface salinity data derived from thermosalinograph instruments installed onboard voluntary observing ships are freely distributed by the French Sea Surface Salinity Observation Service (http://www.legos.obs-mip.fr/observations/sss/). The TRMM data were acquired as part of the activities of NASA's Science Mission Directorate, and are archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). Special thanks go to Cristobal Lopez and Emilio Hernandez-Garcia for providing their code for the FSLE computation, and to Serena Illig for her help on the wavelet analysis. Comments on the original version from Dave Behringer were greatly appreciated, and we would like also to gratefully thank Tangdong Qu and the other anonymous reviewer for their fruitful comments. This work is supported by the Institut de Recherche pour le Developpement (IRD) and by the Centre National de la Recherche Scientifique (CNRS). 0 AMER GEOPHYSICAL UNION WASHINGTON J GEOPHYS RES-OCEANS The small-scale features in sea surface temperature and salinity fields (SST and SSS) of the Coral Sea are examined using high horizontal spatial and short-term temporal in situ measurements. These features are extracted from thermosalinographs (TSGs) gathered onboard commercial and research vessels and at one long-term fixed station. The analyses are performed along the vessel tracks and the structures of small-scale features are extracted by high-pass spatial filtering the original TSG data. For SSS, it is shown that the features at the scale of mesoscale eddies (approximate to 100 km) vary from about -1.1 to +0.6 psu in the Coral Sea region. Processes sustaining such range include rainfall events, stirring by mesoscale eddies, and the latitudinal displacement of the sharp front associated with the edge of the Western Pacific Warm Pool at the seasonal time scales. The TSG data have revealed the presence of a sharp front (0.4-0.6 psu) between the subtropical and equatorial waters instead of a smooth gradient in the standard SSS climatologies. Within the context of recent remotely sensed observations of salinity, this could represent an important limitation for the validation and calibration of satellite products. In addition to these spatial considerations, temporal variations at one long-term station near Vanuatu show that the coupled air-sea responses to intraseasonal tropical variability, such as the Madden-Julian Oscillation, may have a signature in both SST and SSS fields. However, this response is found to be complex and not necessarily in phase. In the Coral Sea region, our results suggest that MJO-induced variability on SST and SSS exhibit little coherency at the seasonal time scales.