Complementary Use of Glider Data, Altimetry, and Model for Exploring Mesoscale Eddies in the Tropical Pacific Solomon Sea
Gourdeau L., Verron J., Chaigneau A., Cravatte S., Kessler W.. 2017. .
ARTICLE, (2017 ) - PUBLISHEDVERSION - English (en-GB)
OPENACCESS -
http://hal.archives-ouvertes.fr/licences/copyright/, info:eu-repo/semantics/OpenAccess.
Audience : OTHER
HAL CCSD
Subject
model, glider and satellite data, Solomon sea circulation, tropical mesoscale eddies, [SDU]Sciences of the Universe [physics], [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography
Domains
Océanographie, Sciences de la Terre
Description
International audience Mesoscale activity is an important component of the Solomon Sea circulation that interacts with the energetic low-latitude western boundary currents of the South Tropical Pacific Ocean carrying waters of subtropical origin before joining the equatorial Pacific. Mixing associated with mesoscale activity could explain water mass transformation observed in the Solomon Sea that likely impacts El Niño Southern Oscillation dynamics. This study makes synergetic use of glider data, altimetry, and high-resolution model for exploring mesoscale eddies, especially their vertical structures, and their role on the Solomon Sea circulation. The description of individual eddies observed by altimetry and gliders provides the first elements to characterize the 3-D structure of these tropical eddies, and confirms the usefulness of the model to access a more universal view of such eddies. Mesoscale eddies appear to have a vertical extension limited to the Surface Waters (SW) and the Upper Thermocline Water (UTW), i.e., the first 140-150 m depth. Most of the eddies are nonlinear, meaning that eddies can trap and transport water properties. But they weakly interact with the deep New Guinea Coastal Undercurrent that is a key piece of the equatorial circulation. Anticyclonic eddies are particularly efficient to advect salty and warm SW coming from the intrusion of equatorial Pacific waters at Solomon Strait, and to impact the characteristics of the New Guinea Coastal Current. Cyclonic eddies are particularly efficient to transport South Pacific Tropical Water (SPTW) anomalies from the North Vanuatu Jet and to erode by diapycnal mixing the high SPTW salinity.
Creators
Gourdeau, L., Verron, J., Chaigneau, A., Cravatte, S., Kessler, W.
Contributors
Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut des Géosciences de l’Environnement (IGE) ; Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Sources
Journal of Geophysical Research: Oceans, https://hal-insu.archives-ouvertes.fr/insu-03706518, Journal of Geophysical Research: Oceans, 2017, 122, pp.9209-9229. ⟨10.1002/2017JC013116⟩
Relation
info:eu-repo/semantics/altIdentifier/doi/10.1002/2017JC013116